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Abstract 
 

This paper presents results from a preliminary system 
dynamics simulation model of a hypothetical community 
in poor health and suffering from a “syndemic” of 
intertwined afflictions.  Prevention science has moved 
from an emphasis on single diseases and epidemics 
toward a more systemic, ecological perspective, including 
the concept of causal feedback. From this perspective, 
afflictions may be seen as being affected by—but also as 
affecting over time—adverse living conditions and the 
community’s internal capability to address its health and 
social problems.  System dynamics provides a 
methodology for translating this feedback view into 
testable form and analyzing its implications, including 
those involving policy decisions.  Our simulation model is 
relatively compact, containing only three stocks and 
about 100 variables overall, including some thirty 
constants that specify fixed aspects of the community, the 
cluster of afflictions, the effectiveness of problem-fighting 
efforts, and the cost-effectiveness of potential outside 
assistance from government and philanthropies. The 
model is based on the literature and the observations of 
public health officials, researchers, and community health 
advocates, but has not yet been verified and refined 
through case study application.  Nonetheless, 
optimization and sensitivity testing of the model have 
generated logically defensible hypotheses about the 
dynamic impacts on community health of various types of 
outside assistance and their relative benefits.  One such 
hypothesis is that the first priority for outside assistance 
in communities that are weak and struggling against 
multiple afflictions should be to assist in building 
community strength, perhaps even before substantial 
assistance is provided for direct fighting of prevalent 
diseases.  Another possibility suggested by the model is  
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that outside assistance aimed directly at improving living 
conditions may have downsides (time lags, unintended 
side effects) that render such assistance less beneficial in 
the absence of widespread citizen participation than other 
types of assistance for health improvement. 
 
 
1. Introduction 
 

Public health systems around the world are rightly 
praised for safeguarding human health against an 
immense array of threats.  But can those protections be 
maintained and more equitably shared in the future?  
Many observers question what it will take to craft a 
system of health protection that is capable of controlling 
contemporary afflictions and emerging hazards, while 
also creating progressively safer conditions.  To be 
successful in such work, prevention planners must learn 
more about the causal forces that govern how health 
problems develop and spread, why they persist, how they 
interact, and where and among whom they concentrate.  
Equally important are questions about whose effort is 
needed in protecting the public’s health, and how the 
relationships among those actors translate into community 
strength and resiliency.  Particular diseases may rise and 
fall, but the test of a society’s public health system lies in 
the continuing ability of its citizens to minimize their 
overall burden of affliction and assure the conditions in 
which people can be healthy. 

System dynamics simulation modeling is well 
equipped for analyzing such complex problems [25].  It 
can be used to formalize the principles of public health 
practice, while strengthening the scientific foundation and 
active policy focus that are the hallmarks of prevention.  
Part of what makes system dynamics so useful is its 
emphasis on causal feedback as an organizing principle 
for explaining observed patterns of behavior [19]. For 
public health  problems, particularly those with 
7.00 (C) 2004 IEEE 1
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• God’s will 

• Humors, miasma, ether 

• Poor living conditions, immorality (e.g., sanitation)

• Single disease, single cause (e.g., germ theory) 

• Single disease, multiple causes (e.g., heart disease)

• Single cause, multiple diseases (e.g., tobacco) 

• Multiple causes, multiple diseases 
(but no feedback dynamics)  (e.g., social epidemiology)

• Dynamic feedback among afflictions, living conditions, 
and community capacity (e.g., syndemic) 

1880 

1950 

1960 

1980 

2000 

1840 

 
 

Figure 1. A brief history of theories of poor community health 

 

long delays like chronic diseases, this approach provides a 
better grasp of forces that are separated in time and space 
from the health events that individuals experience.  In the 
context of community health, such forces include, for 
example, the effects of social disparity, changes in living 
conditions, and investments in community organizing or 
leadership.   

To explain why a particular pattern of affliction 
develops in a community, it is necessary to look beyond 
the immediate causes of prevalent diseases.  In line with 
the stated mission and values of public health today, the 
analytic boundary must widen to include, at a minimum, 
states of affliction, living conditions, as well as the 
community’s capacity to address them both. This 
perspective continues a rapid evolution of theories about 
what causes poor community health, as shown in Figure 
1, and moves prevention science from a focus on separate 
epidemics toward a syndemic orientation [4]. 

Scholars and practitioners have long observed 
interactions between health problems, but it was Merrill 
Singer (an anthropologist studying substance abuse, 
violence, and AIDS) who first suggested that empirical 
connections between epidemics might signify the 
existence of a higher-order phenomenon, which he named 
a “syndemic” [20, 21, 22, 23].   A related line of thinking 
can be found in the work that Rodrick and Deborah 
Wallace have done tracking a “synergism of plagues” 
within minority neighborhoods in New York City over a 
20-year period [29, 30, 31].   

The concept of syndemics emerges from an 
ecological approach to prevention science that began in 
the 1970s and has gained strength ever since [9, 10].  
Today, ecological thinking flourishes as public health  
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professionals craft health promotion policies [26], develop 
research agendas [27], and move toward a dynamic, 
ecosocial view of health [17].  Still, there remains a gap 
within prevention science between the conceptual 
understanding of health as a dynamic phenomenon and 
the operational tools that are used to plan and evaluate 
preventive actions.  Most formal models in the field 
simply have not been made to adhere to the basic 
properties of ecological systems, but instead still rely on a 
statistical regression approach unable to capture the causal 
feedback that makes health problems resistant to change.   

By contrast, a system dynamics approach explicitly 
models causal feedback, and also provides the benefits of 
simulation for policy planning and evaluation [6, 25].  
The remainder of this paper summarizes results from the 
analysis of a preliminary system dynamics model of 
syndemics. (See [13] for a previous version of this 
model.)  The objective of this analysis was to better 
understand the properties and implications of the model, 
as well as implications regarding optimal interventions for 
reducing affliction burden in an unhealthy community.  
Inasmuch as all modeling is iterative [12], these findings 
represent one step in our formal exploration of syndemics.   

 
2. The Dynamic Model 
 

Our model of syndemics is based on the literature and 
the observations of public health officials, researchers, 
and community health advocates with first-hand 
involvement in efforts to improve population health.  It is 
a general model, meant to be applicable to any 
community and any cluster of afflictions.  The model has  
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Figure 2.  Overview of the community health model 
not yet been applied to any particular circumstance, and 
for this reason should at this point be considered 
exploratory and suggestive, not a model that is fully tested 
and determined to be reliable for decision making in 
specific situations [12, 25].  Although we intend to 
develop the model further through case studies, it should 
be noted that even exploratory models can shed valuable 
new light on a situation. (References [11] and [24], for 
example, present models that, despite their lack of 
detailed empirical verification, can simulate recognized 
dynamics and contain ideas and policy implications that 
have influenced discussion among scholars.) 

An overview of our model’s feedback structure is 
presented in Figure 2.  The model contains three stock 
variables (also known as states, levels, or accumulators), 
each defined as a fractional measure on a zero to one 
scale: affliction prevalence, adverse living conditions 
prevalence, and community strength. Affliction 
prevalence represents the fraction of the community’s 
population not currently in a state of good physical or 
mental health.1  This summary measure [15] is directly 

                                                 
1 For the sake of simplicity and transparency, the model presented here 
does not depict the community’s population in any greater detail than in 
terms of overall affliction prevalence.  A previous model [13] considered 
eight different population stocks, with flows of incidence and recovery 
for three interacting afflictions.  That model also addressed the possible 
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related to the average number of unhealthy days per 
person per month, as defined by the CDC’s “Healthy 
Days” index [2], and which we call affliction burden 
(after [18]).  The mean affliction burden of the 18-and-
older population nationwide during the period 1993-2001 
ranged from 5.2 to 6.0 days per month.  For specified 
subgroups, the averages for 1993-1997 were:  Less than 
high school education 7.5, Unemployed more than a year 
9.1, Heart disease 12.9, Diabetes 15.5, Cancer 19.2 [3].    

Figure 2 shows the causal relationships within a 
community that can drive up affliction, that attempt to 
control affliction, and that can either undermine or 
reinforce the ability to control affliction.  A syndemic is 
described in the feedback loop labeled R1 as a vicious 
cycle in which cross-impacts among afflictions increase 
the vulnerability of an already afflicted subset of the 
population to additional poor health.  Also contributing to 
the population’s vulnerability in a syndemic are adverse 
living conditions [32, 33].  In response to unacceptably 
high levels of affliction and adverse living conditions, the 
community launches programs to fight these problems, as 
indicated by balancing loops B1a and B1b, respectively.  
The magnitude of these responses is related not only to 

                                                                               
outward migration of non-afflicted individuals in reaction to a high 
prevalence of affliction in the community.  
.00 (C) 2004 IEEE 3
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the severity of the problems, but also to the strength of the 
community, that is, its internal capacity for action [7, 8]. 

If community strength is too low to make a strong 
response to problems, leaders within the community may 
attempt to build greater strength through organizing and 
leadership development efforts, as suggested by balancing 
loop B2.  Outside assistance from government and 
philanthropies may bolster such efforts, as they may also 
bolster the problem-fighting efforts themselves.  But 
community strength may be hindered by social disparity, 
a divisive situation made worse by the prevalence of 
problems among a subset of society that is often feared or 
distrusted [34].  Because the prevalence of these problems 
can undermine the community-wide unity needed to fight 
them, the problems may go unchecked and spread further 
than they would otherwise; see reinforcing loops R2a, 
R2b, and R2c. 
 The loops R3a and R3b indicate how the fighting of 
problems tends to reinforce a low or high level of 
community strength [5]. When problems spread in a weak 
community, problem-fighting efforts tend to be taken over 
by small groups of professionals who specialize in those 
problems, a divided process that ends up reinforcing the 
community’s weakness. On the other hand, when 
problems spread in a strong community, the response 
tends to be more multi-faceted and elicit greater 
contributions from ordinary citizens in the form of “public 
work”, a united process that reinforces the community’s 
strength [1, 16]. 

The remaining loops going through community 
strength show how the fighting of problems today may 
affect the community’s ability to fight problems in the 
future.  The reinforcing loops R4a and R4b suggest that 
because united efforts build community strength, they 
help to make possible more such efforts in the future.  The 
balancing loops B3a and B3b suggest that because 
divided efforts tend to sap community strength, they may 
hinder the ability to make more problem-fighting efforts 
in the future.      

The existence of these multiple reinforcing and 
balancing loops around community strength suggests that 
the question of how best to provide outside assistance to 
an afflicted community is not a simple one.  Outside 
assistance for problem fighting provided to a weak 
community may cause further fragmentation of effort and 
undermine the community’s internal response capability, 
which could lead to a recurrence of problems after the 
outside assistance ends.  Thus, it may be best in some 
situations to provide outside assistance that emphasizes 
the building of strength more than the direct fighting of 
problems.    

The simulation model puts the causal relationships of 
Figure 2 into testable form.  It contains about 100 
variables, of which about 30 are parameters used to 
specify enduring aspects of the situation in regard to 
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affliction vulnerability and contagion, adverse living 
conditions and community strength, and the effectiveness 
of programs and outside assistance.  After initial tests 
were done to explore the model’s behavior under various 
parameter settings, a  “basic” setting of the parameters 
was selected which is meant to depict a relatively poor 
and weak community vulnerable to the high affliction 
prevalence typical of a syndemic.  For example, the basic 
setting assumes (1) that the community’s particular 
cluster of afflictions includes strong cross-impacts, (2) 
that the baseline prevalence of adverse living conditions is 
relatively high, and (3) that the baseline community 
strength is relatively low.2 

Figure 3 presents simulation results, depicting the 
growth of affliction burden over a 20-year period for each 
of four scenarios.  In each scenario, affliction prevalence 
was initialized (set at Time 0) to a value of 20% that 
corresponds to an affliction burden of 6, the nationwide 
average in 2001.  One may imagine that this initial 
condition represents the health status of the population 
prior to the development of a syndemic, or perhaps 
describes that portion of the population that is new to the 
community.  Over a period of 20 years, affliction burden 
under the model’s basic setting (the blue line) grows and 
finally settles at an affliction burden of 10, which is quite 
high for an entire community.3  During these 20 years, 
both the reinforcing and the balancing loops described 
above are active, but in these scenarios no outside 
assistance is provided.  The result is a pattern of growth 
that is most rapid initially, reflecting both same-affliction 
and cross-affliction contagion effects, but then decelerates 
and converges to a steady-state value.  With the increase 
in affliction comes greater social disparity and, 
consequently, some erosion in community strength (not 
shown in Figure 3).  Although this erosion does weaken 
the problem-fighting loops somewhat, the effect is  

                                                 
2 Parameter values for the basic setting are presented in Table 1.  The 
three parameters of interest here are (1) Maximum additional at risk 
fraction from affliction cross impact (MARCI), with a basic value of 0.4; 
(2) Baseline adverse living conditions prevalence (BALC), with a basic 
value of 0.26; and (3) Baseline community strength (BCS), with a basic 
value of 0.4.  With MARCI set to 0.4, the model’s steady state at-risk 
fraction (a fraction of the community’s total person-days per month) is 
55%.  If MARCI were set to zero (no cross impacts), the steady state at-
risk fraction would be reduced to 41%. 
 
3 The CDC’s Healthy Days survey [3] asks individuals to describe their 
overall health as excellent, good, fair, or poor, and then to estimate their 
number of unhealthy days per month.  In the 2001 survey, 15% of the 
200,000 surveyed described their health as fair or poor, with an average 
of 15.7 unhealthy days per month, while 85% described their health as 
excellent or good, with an average of 4.3 unhealthy days per month.  
The overall average of 6.0 thus disguises a very skewed distribution of 
unhealthy days.  For a community to have an overall average of 10—still 
assuming that 15.7 represents fair or poor, while 4.3 represents excellent 
or good—the fraction reporting fair or poor would have to be 50%, 
much greater than the national average of 15%. 
 

.00 (C) 2004 IEEE 4
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Figure 3.  Development of a syndemic—Four scenarios 
 
gradual and does not result in explosive growth in 
affliction. 

In the three other scenarios presented in Figure 3, one 
or another of the “pessimistic” assumptions of the basic 
setting is relaxed, and the result is less growth in affliction  
 burden.  These are the assumptions described above 
regarding affliction cross-impacts, baseline adverse living 
conditions prevalence, and baseline community strength.4  
The results give some indication of how important each 
assumption is to determining the steady-state level of 
affliction in the model.   The impact of adverse living 
conditions on vulnerability is perhaps the most important; 
see the green line.  Also quite important is the affliction 
cross-impact effect; see the red line.  Of somewhat less 
importance in determining steady-state affliction, though 
still significant, is the effect of community strength on 
problem fighting; see the gray line.  One reason that 
community strength is not quite as important as the other 
factors is that some professional efforts to fight individual 
afflictions can be undertaken, with limited public  
 

                                                 
4 In the scenario labeled “Weaker cross-impacts among afflictions”, 
MARCI has been changed from its basic value of 0.4 to its better value 
of 0.1.  In the scenario labeled “Better living conditions”, BALC has 
been changed from its basic value of 0.26 to its better value of 0.13.  In 
the scenario labeled “Greater community strength”, BCS has been 
changed from its basic value of 0.4 to its better value of 0.6.  See Table 1 
for a complete list of basic, better, and worse values used in sensitivity 
testing. 
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engagement, even in a weaker community with fewer 
organizational resources.  In particular, it is assumed that  
only two-thirds of any reduction in community strength 
translates into reduced capability for fighting afflictions.    
   
3. Optimal Decision Making 
 

The model includes three types of outside 
assistance—for fighting affliction (AF), eliminating 
adverse living conditions (LC), and building community 
strength (CS)—that may supplement the community’s 
own internal efforts in these areas.  In the real world, 
resources for assistance are limited in amount and 
duration, and decisions must be made about how these 
resources will be spent.  In the model, we have not 
specified the size of the budget in dollars, but have instead 
described outside assistance as a total pie of 100% that 
must be divided among the AF, LC, and CS types.  (We 
assume, for the sake of simplicity, no minimum threshold 
for spending and no upper limit less than the total 
available budget for any of the three types of assistance.)   
Model parameters specify the cost-effectiveness (broadly 
speaking) of each type of assistance in terms of its per-
unit ability to boost program efforts in the community.   
7.00 (C) 2004 IEEE 5
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•  Setting up the decision parameters for optimization
Define six optimization parameters:

Fraction of assistance to affliction pgms: T0 (time 0-4), T4 (time 4-8), T8 (time 8-12)
Fraction of non-affliction assistance to living conditions pgms: T0, T4, T8

Fraction of assistance to living conditions programs =
(1 – Fraction of assistance to affliction pgms) x
Fraction of non-affliction assistance to living conditions pgms

Fraction of assistance to community building =
(1 – Fraction of assistance to affliction pgms) x
(1 – Fraction of non-affliction assistance to living conditions pgms)

•  Run the model starting from Time -20, so that it approximates steady
state by Time 0

•  Vensim® optimizes using a standard grid search algorithm

MINIMIZE:       Affliction burden averaged over Time 4 to Time 20

SUBJECT TO:   0 < {Six optimization parameters} < 1

USING:              Modified Powell search, Fractional tolerance = .0003  
 

Figure 4.  Set-up and procedure for optimization  

 
The model is set up so that assistance may be provided for 
a total of 12 years (T0 to T12), and the decision about 
how to allocate assistance may be made and revised at 
three specific times: at T0, at T4, and at T8.  The ultimate 
goal of outside assistance for a public health agency such 
as the CDC is to reduce the burden of affliction in 
communities while recognizing that the improvement of 
living conditions and the building of community strength 
are linked to that goal and part of the agency's 
responsibility.  In terms of the model, one may say that 
the goal is to minimize the average affliction burden over 
some period of time, both during the 12 years of 
assistance and for some time following its termination.  
(This assistance allocation problem is the subject of an 
online game version of the model [14].)  

With the help of the optimization module of the 
Vensim® modeling software [28], we have sought to 
determine what conclusions one may draw from the 
model about how best to allocate outside assistance.  This 
investigation of optimal decision making started with an 
analysis of the model at its “basic” parameter setting, but 
this was only a starting point, and was followed by a 
wide-ranging sensitivity analysis, as discussed in the next 
section.  Even with the sensitivity analysis, however, it 
must be emphasized that an exploratory model such as 
ours is prone to some misspecification, which could affect 
the results.  Any results discussed here must therefore be 
taken as suggestive rather than prescriptive.         
0-7695-2056-1/04 $
The optimization set-up and procedure is summarized in 
Figure 4.  First, six decision parameters were defined (two 
parameters each for T0, T4, and T8), fractions that may 
range from zero to one and that together ensure that the 
three types of outside assistance always add up to 100%.  
Next, in order to isolate the impacts of outside assistance 
and eliminate any transient behavior unrelated to such 
assistance (such as that seen in Figure 3), all runs are 
started 20 years prior to T0, ensuring that the model sits at 
or near steady state at T0.  Then, for any given setting of 
the model’s 30-odd other parameters (such as the basic 
setting), the Vensim® optimizer (employing a standard 
algorithm, a modified Powell grid search) was used to 
identify the set of decision parameters that minimizes the 
“average affliction burden”, defined as the simple 
quarterly average of the affliction burden over an 
evaluation period that starts at Time 4 and ends at Time 
20.  As with other aspects of the model, the selection of 
the evaluation period was guided by our knowledge of 
public health systems and practices, but should not be 
taken as the final word on the subject.  With the 
evaluation starting at T4 and ending at T20, and outside 
assistance ending at T12, the evaluation looks 
symmetrically at eight years during which assistance is 
active as well as eight years of the post-assistance period.  
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Figure 5. Results under Basic setting with optimal assistance scheme 
 
It is possible that moving the evaluation start time or end 
time could affect the results of optimization, and we have 
done some investigation of this possibility, as discussed 
below.  

When the optimization procedure is applied to the 
basic setting, the result is a scheme which starts with 
100% community strength (CS) assistance at T0, then 
switches to 100% affliction-fighting (AF) assistance 
thereafter (at T4 and at T8); no assistance to improve 
living conditions (LC) is provided.  We refer to this 
scheme as “CS1AF11”, and its results are presented 
graphically in Figure 5.  The initial CS assistance builds 
community strength for the first four years, thereby 
strengthening the community’s internal capacity for 
fighting affliction and adverse living conditions, and 
ensuring that subsequent problem fighting will be more 
unified and do less to undermine community strength.  
The switch to AF assistance at T4 greatly boosts the 
affliction-fighting programs, and the affliction burden is 
reduced dramatically over the next eight years.  However, 
after the assistance is terminated at T12, the affliction 
burden rebounds significantly.  The magnitude of this 
rebound is related to the fact that community strength 
gradually erodes after the end of CS assistance at T4, so 
that by T12 the community’s internal capacity to fight 
affliction is not as great as it would have been had the CS 
assistance continued.  
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Figure 6 presents a comparison of the optimal 

CS1AF11 scheme under the basic setting with three other 
assistance schemes, in terms of their impacts on affliction 
burden. 
• A scheme which involves using only affliction-
fighting assistance (“AF111”) results in more reduction in  
affliction initially (through T6) compared with the optimal 
scheme, but less reduction through T12, followed by a 
similar rebound in affliction through T20.   
• A scheme which involves using only assistance for 
improving living conditions (“LC111”) reduces affliction 
to a degree nearly identical to the optimal scheme during 
the first four years, but not nearly as much during the next 
eight.  Though the improved living conditions and 
reduced affliction burden persist beyond T12 with little 
rebound, the optimal scheme is still superior to LC111 
until T18.   
• A scheme which involves using only strength-
building assistance (“CS111”) has results similar in 
pattern but uniformly superior to those of LC111 after T4.  
As in LC111, the improvements persist beyond the 
termination of assistance at T12 with little rebound, but 
because the improvements under CS111 are greater than 
those of LC111, the advantage of the optimal scheme over 
CS111 is less distinct.  In particular, while the affliction 
burden is higher under CS111 than under the optimal  
7.00 (C) 2004 IEEE 7
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Figure 6. Comparison of affliction burden under basic setting for four different assistance schemes
 
scheme through T14, it is lower thereafter, increasingly 
so.  

The finding that CS111 is superior to LC111 after T4 
may at first seem to contradict the previous finding from 
Figure 3 that better living conditions do more to reduce 
the growth of affliction than greater community strength 
does.  But in those alternative growth scenarios we 
assumed better living conditions or community strength 
from the start, reflecting enduring qualities of the 
community.  In contrast, in Figure 6 the improvement is 
caused by outside assistance, a process which has some 
negative side effects. These side effects, acting through 
the balancing loop labeled B3b in Figure 2, magnify 
divided efforts rather than public work, thereby 
undermining community strength to some extent and 
hindering internal problem-fighting efforts.  As a result, 
LC assistance fails to make as much improvement in 
living conditions and affliction burden as one might 
expect based on Figure 3 or the first four years of Figure 
6. 

The fact there are allocation schemes superior to 
CS1AF11 early and late in the simulation (AF111 is 
superior prior to T6, and CS111 is superior after T14) 
suggests that perhaps the optimal allocation scheme could 
be different for evaluation periods other than T4 to T20.  
Further model testing indicates that changing the 
evaluation start time to T0 does not affect the choice of 
optimal scheme, but extending the evaluation end time 
can change the optimal scheme to one that puts more  
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emphasis on CS assistance.  If the evaluation end time is 
extended to something in the range of T21 to T26, the 
optimal scheme becomes “CS11AF1”, with 100% CS 
assistance at T0 and T4, then AF assistance at T8.  If the 
evaluation end time is T27 or later, the optimal scheme 
becomes CS111, with 100% CS assistance throughout the 
12 year period of assistance.  Given a fundamentally weak 
community, the longer the period of post-assistance 
evaluation is, the more priority one must give to 
community strength during the period of assistance, so as 
to minimize the post-assistance rebound in affliction.              
 
4. Sensitivity Analysis 
 

It is always important to test the sensitivity of model 
results to parameters that are uncertain, or, in a general 
model like ours, that may change from one application 
context to another.  In the case of our exploratory 
syndemic model, most of the parameters fit this 
description.  In particular, the model contains about two 
dozen parameters that could conceivably change from one 
case to another, constants describing the community, the 
cluster of afflictions, the effectiveness of problem-fighting 
efforts, and the cost-effectiveness of outside assistance.  

Table 1 presents a list of the constants that were the 
subject of sensitivity testing.  For each constant, three 
significantly different values were selected:  Cbasic, Cbetter,  
and Cworse.  The basic model setting analyzed in the 
previous section results when all constants are set to Cbasic.   
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Table 1.  Alternative parameter settings for sensitivity testing 

Acronym
for Runs Basic Better Worse

COMMUNITY & AFFLICTION CHARACTERISTICS
Baseline adverse living conditions prevalence BALC 0.33 0.2 0.5
Baseline affliction recovery rate BAREC 0.1 0.2 0.05
Baseline at risk fraction BAR 0.2 0.1 0.3
Baseline community strength BCS 0.42 0.6 0.2
Baseline contagious incidence rate BCIR 0.6 0.3 0.9
Baseline noncontagious incidence rate BNIR 0.1 0.05 0.2
Community strength development time CSDT 4 2 8
Community strength erosion time CSET 8 12 4
Effect of max professional work on community strength EMPRO 0.5 0.7 0.3
Effect of max public work on community strength EMPUB 2 2.5 1.5
Effect of max social disparity on community strength EMDIS 0.5 0.7 0.3
Living conditions erosion time LCET 8 12 4
Living conditions improvement time LCIT 4 2 8
Maximum additional at risk fraction from affliction cross impact MARCI 0.4 0.1 0.7
Maximum additional at risk fraction from living conditions MARALC 0.75 0.5 1

PROGRAMS & OUTSIDE ASSISTANCE
Effect of max programs on adverse conditions EMPALC 0.5 0.3 0.7
Effect of max programs on affliction incidence EMPAI 0.6 0.4 0.8
Effect of max programs on affliction recovery EMPAR 2 2.5 1.5
Internal capacity for affliction pgms if no community strength ICAP0 0.33 0.5 0.2
Internal capacity for LC pgms if no community strength ICLCP0 0 0.25 NA
Max boost in affliction programs from assistance MBAPA 0.3 0.5 0.2
Max boost in community strength from assistance MBCSA 0.3 0.5 0.2
Max boost in living conditions programs from assistance MBLCPA 0.5 0.7 0.3

Setting

 
 

 

Other settings tested included: 
• All settings in which a single constant is changed to 
Cbetter and all others left at Cbasic   
• All settings in which a single constant is changed to 
Cworse and all others left at Cbasic  
• Several other “combination” settings in which two to 
five related constants are changed to Cbetter or Cworse and 
all others left at Cbasic.  For example, one might combine a   
lower Baseline at risk fraction (BAR) and a lower 
Maximum additional at risk fraction from affliction cross 
impact (MARCI) to create a scenario in which the 
community’s vulnerability to affliction is reduced.  Or, 
one might combine a greater Effect of max programs on 
affliction incidence (EMPAI) and a greater Effect of max 
programs on affliction recovery (EMPAR) to create a 
setting in which affliction-fighting programs are more 
effective than they are in the basic setting.  Or, one might 
combine all four of these parameter changes to create a 
setting with lower affliction vulnerability combined with 
more effective affliction-fighting programs.    

For each setting, the optimization procedure 
described in Figure 4 was performed.  For most of the 
over fifty settings tested, the optimal assistance allocation 
scheme turned out to be the same as under the basic 
setting, namely CS1AF11.  But for twelve of the settings 
 

0-7695-2056-1/04 $1
(six of them involving change in a single constant, the 
other six involving combination changes), the optimal 
assistance scheme is something different than CS1AF11.  
In five of these cases, CS1AF11 does nearly as well as the 
optimal scheme, with CS1AF11 producing an average 
affliction burden greater than that of the optimal scheme 
by no more than 0.1 unhealthy day per person per month.  
In the other seven settings, where CS1AF11 is neither 
optimal nor very close to optimal, the specific parameters 
that have been changed from the basic setting are 
relatively few in number and type.  These include:  
• Parameters modulating the direct impact or 
effectiveness of problem-fighting efforts (EMPAR and 
EMPAI for affliction, EMPALC for living conditions), 
and 
• Parameters modulating the boost that assistance gives 
to the magnitude of effort—or, as we have said, the cost-
effectiveness of assistance (MBAPA for affliction, 
MBLCPA for living conditions, and MBCSA for 
community strength.) 

A final observation from the sensitivity testing is that 
living conditions (LC) assistance is part of the optimal 
scheme for only a small number of settings.  Moreover, 
only under two of these settings does an optimal scheme 
including LC assistance significantly impact the average 
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affliction burden relative to CS1AF11, which includes no 
LC assistance.  Both of these settings assume greater 
effectiveness of LC efforts, as well as greater cost-
effectiveness of LC assistance.       
 
5. Conclusion 
 

Scholarly research in public health has started to 
recognize the systemic and circular nature of entrenched 
community health problems, gradually advancing from an 
epidemiological to a syndemic orientation.  The question 
now is how to use a syndemic perspective for the 
development of practical guidelines for action.  
Simulation modeling is a methodology well suited to 
analyzing problems marked by feedback dynamics, to 
help in the development of such guidelines.  The model 
presented in this paper represents an initial attempt to 
translate current thinking on syndemics into the testable 
form of a simulation model, and to determine how such a 
model might inform community health policy decisions.   

Our model is at this point an exploratory one, not yet 
verified and refined through case study application.  
Nonetheless, testing and optimization of the model have 
led to several hypotheses about the dynamic impacts of 
various types of outside assistance on community health.  
One such hypothesis, familiar to experienced 
practitioners, is that the first priority of philanthropies and 
government in addressing communities that are weak and 
struggling against multiple afflictions should be to assist 
in building community strength, enabling a greater degree 
of citizen-led public work, perhaps even before 
substantial assistance is provided for direct fighting of 
prevalent diseases.  Another hypothesis suggested by the 
model is that outside assistance aimed directly at 
improving living conditions may often be insufficiently 
cost-effective, due to time lags and unintended side 
effects, to warrant making such assistance a high priority 
in the absence of widespread citizen participation—this 
despite the fact that adverse living conditions are a 
powerful determinant of vulnerability to affliction.   

The value of a simulation model lies not only in the 
identification of hypotheses for optimal decision making, 
but also in the ability it provides to explain how those 
hypotheses emerge logically from a feedback structure 
that integrates the best available knowledge on the 
subject.  The hypotheses described in the previous 
paragraph, for example, reflect the presence in the model 
of relationships depicting the perverse effect that 
problem-fighting programs may have on community 
strength when the community is not strong to begin with.  
We intend to continue moving the model in a direction 
that will enable it to be useful and transparent in this way 
to other investigators in the area of community health. 
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